Numerical Experiments on Noisy Chains: From Collective Transitions to Nucleation-Diffusion

نویسندگان

  • Mario Castro
  • Grant D. Lythe
چکیده

We consider chains of particles with nearest-neighbor coupling, independently subjected to noise, all initially in the same well of a symmetric double-well potential. If there are sufficiently few particles, transitions from one well to another are “collective”; i.e., all particles remain close together as they make the passage from one well to the other. In longer chains, only a fraction of the particles make an initial transition, creating a nucleated region that may grow or collapse by diffusion of its boundaries. Numerical experiments are used to explore the change of the scaling of the passage time as a function of the length of the chain, which distinguishes the two regimes. A suitable relationship between the noise amplitude, coupling, and number of particles in the chain yields convergence to the continuum φ or Allen–Cahn stochastic partial differential equations in one space dimension. We estimate the characteristic width of newly nucleated regions and construct a numerical effective potential describing the dynamics in the nucleation-diffusion regime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUMERICAL SIMULATIONS OF THE PHASE TRANSITIONS IN CLUSTERS

We have studied the phase transitions in atomic clusters by molecular dynamics simulation, assuming Lennard-Jones interatomic pair potential. Calculations are performed by DAP parallel computer. The results are analyzed by simulating their orientational distribution plots (dot-plot), and neutron diffraction patterns. It is shown that all the main features of the bulk phase transitions are e...

متن کامل

Interactions and disorder in quantum dots: instabilities and phase transitions.

Using a fermionic renormalization group approach, we analyze a model where the electrons diffusing on a quantum dot interact via Fermi-liquid interactions. Describing the single-particle states by random matrix theory, we find that interactions can induce phase transitions (or crossovers for finite systems) to regimes where fluctuations and collective effects dominate at low energies. Implicati...

متن کامل

AUTHOR and affiliation:

INTRODUCTION This short review covers a wide selection of topics from a multidisciplinary area of dynamics of nonequilibrium systems in physics, chemistry, biology. Theoretical models of colloid particle and protein deposition and adhesion at surfaces, accompanied by relaxation processes, of reaction kinetics with and without diffusion, of phase coarsening and nucleation, will be surveyed. The ...

متن کامل

Domain wall propagation and nucleation in a metastable two-level system.

We present a dynamical description and analysis of nonequilibrium transitions in the noisy one-dimensional Ginzburg-Landau equation for an extensive system based on a weak noise canonical phase space formulation of the Freidlin-Wentzel or Martin-Siggia-Rose methods. We derive propagating nonlinear domain wall or soliton solutions of the resulting canonical field equations with superimposed diff...

متن کامل

Supernova Neutrinos: Strong Coupling Effects of Weak Interactions

In core-collapse supernovae, ν and ν are initially subject to significant selfinteractions induced by weak neutral currents, which may induce strong-coupling effects on the flavor evolution (collective transitions). The interpretation of the effects is simplified when self-induced collective transitions are decoupled from ordinary matter oscillations, as for the matter density profile that we d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2008